PRISM

Processing Routes for Integrated Structural Monitoring

> Technology Dissemination 21st January 2009

> > Introduction: Julian Ellis OBE Ellis Developments Ltd

Collaborators

BVT Group

Deep Sea Engineering and Management Ltd Ellis Developments Ltd QinetiQ Ltd Sigmatex (UK) Ltd

The Strengths of the Consortium

- A 'pan industrial' group comprised of a multidisciplinary team
- Integrated supply chain approach
- Active problem solving personnel with a 'can do' attitude
- Short cycle times with often a short turn-around of a couple of weeks.

Potential of the Process

- Quick process from conception to scoping
- Both new products and a retrofit process
- Short timescales possible from pre-form to product testing

An example of making a demonstrator

Example boat hull timetable

20' MILITARY RIB BUILD

Design	20 days
Tooling	10 days
Hull and Deck Construction	20 days
Machinery Fit Out	28 days
Trials	5 days
Customer sea trial	2 days
Clean up	3 days
Acceptance	1 day
Total	89 days

Project Objectives

- To develop manufacturing methods for the automated insertion of sensors into reinforcing fabrics and pre-forms.
- Demonstration of a robust integrated SHM system
- Develop guidelines for structures with SHM

Project Financing

- 40% Technology Strategy Board
- 60% Project Partners
- Total project funding £1.04 million

The Key Challenges

- Exiting the wiring from the composite
- Insulating the sensors
- Ensuring the sensors did not weaken the structure
- Connectivity
- Survivability in construction
- Losing the sensors in the composite!

What we have developed

A new range of manufacturing techniques:-

- Production focussed
- Some mass production methodologies
- Application oriented processes
- General production orientation

Because we are a 'vertical' group of people who think that way!

Sensor Development

Amorphous Sensor

© Copyright QinetiQ 2009

Voltage Output

Piezo Coax sensors

Process Route

- 1. Conception
- 2. Design
- 3. Application engineering
- 4. Weaving and/or stitching
- 5. Lay up
- 6. Infuse
- 7. Manufacture simple 'black box' for electronics
- 8. Deliver

Tufting with Sensor

Copyright QinetiQ 2009

Tufting with Sensor

© Copyright QinetiQ 2009

Sensor in Stitched Pocket

© Copyright QinetiQ 2009

Stitching for the Demonstrator

Filament wound tube with sensors

A Short Introduction to Structural Health Monitoring

Lisa Fixter QinetiQ, Farnborough

Why consider SHM?

- Advanced materials are being used Polymeric Composites
 - Stronger and lighter materials being used for structures
 - Ever increasing performance requirements
 - Damage mechanisms of newer composite structures differ from metallic structures
 - Requirement for more reliable structures

Requirements of a SHM system

- Reliable damage detection
 - Must not miss events
 - Without false alarms
- Measurement of defect size and location
- Accurate load measurements
- Real-time or baseline systems must provide simple feedback to operator as to status of structure
 - Traffic light system often quoted

Requirements of an SHM system

- Combined with understanding of the material/structural behaviour
 - Knowledge of the significance of defects
 - Knowledge of load cases for structures
 - Understanding of the frequency of occurrence of events
 - Knowledge of uncertainty at each stage
 - Sensor application / embedding must not degrade mechanical properties
- Temperature compensation may be required
- Wireless systems desirable

SHM of Structures

- Defect types of interest
- European Framework IV MONITOR project questionnaire results

Smart Sensors used for SHM

Sensor type	Advantages	Disadvantages
Optical Fibre	Dielectric - immune to EMR Sensors such as FBGs do not suffer zero shift Sensors can be multiplexed Size of optical fibre makes it suitable for embedding into composite materials	Fragile – accidental damage Need to design for redundancy Connections to embedded composites difficult Temperature compensation often required Instrumentation can be complex
Electrical	Mature technology Rest of array is not affected when one sensor goes down Grids can be used for larger coverage Printed circuitry and MEMS miniaturising devices	Weight penalty with individually wired sensors Susceptible to EMR Insulation problems with regard to CFRP Protection from corrosion required Temperature compensation often required

Optical Fibre Sensors

- Multi-core fibre sensors
 - Bending
- Tribroluminescent sensors
 - Light is emitted by crystals when fractured/stressed
 - Used as impact damage sensors

Optical Fibre Sensors

- Fibre Laser sensors
 - Very sensitive strain sensor
 - Acoustic emission
- High Birefringent Damage Detection Technique
 - Transverse stress
 - Impact and damage

Optical Fibre Sensors

Fibre Bragg gratings

Wavelength shifts with strain and temperature

Multiplexed along one fibre length

Wavelength or time domain multiplexing

Can be used to measure

Strain & temperature Crack detection Damage detection Disbond detection Impact detection Acoustic emission Cure monitoring

Electrical sensors

- Magnetostrictive sensors
 - Amorphous wires and ribbons
 - Strain and impact events
- Piezoelectric sensors
 - 0-3 piezoelectric composites
 - Lamb waves
 - Acoustic emission
 - Damage detection / disbonds
- Strain memory alloys
 - Peak strain
- Shape memory alloys
 - Typically used actively resistance can be measured for SHM purposes

Electrical Sensors

- Self sensing
 - Change in resistance of carbonfibre reinforced plastics
- Electrical resistance
 - Strain gauges or embedded resistive wires
 - Electrical Resistive Patch
- Amorphous Sensors
- Comparative Vacuum Monitoring

What can SHM provide?

- Real time or Baseline comparisons of health of structure
- Active structures need feedback of position/shape change
- Whole life costs of a structure can be reduced
 - Reduced maintenance NDE inspections
 - Real time monitoring
 - Greater confidence in structural performance of new materials

The PRISM DVD

Technology Applications

Oil Industry
3 deaths from pipeline damage

Composite Risers

- Oil Industry
- Marine

Lifeboat Damage

Ship and Boat Damage

Ship and Boat Damage

- Oil Industry
- Marine
- Wind energy

Wind turbine blade damage

Fuselage Damage

- Oil Industry
- Marine
- Wind energy
- Air frames
- Marine Masts

Mirabella V on the rocks

- Oil Industry
- Marine
- Wind energy
- Air frames
- Marine Masts
- Sails

Yacht sail stress monitoring

- Oil Industry
- Marine
- Wind energy
- Air frames
- Marine Masts
- Sails
- Rail

- Oil Industry
- Marine
- Wind energy
- Air frames
- Marine Masts
- Sails
- Rail
- Deep sea

Deepwater Pressure Vessels

- Oil Industry
- Marine
- Wind energy
- Air frames
- Marine Masts
- Sails
- Rail
- Deep sea
- Seals

- Oil Industry
- Marine
- Wind energy
- Air frames
- Marine Masts
- Sails
- Rail
- Deep sea
- Seals
- Automotive

- Oil Industry
- Marine
- Wind energy
- Air frames
- Marine Masts
- Sails
- Rail
- Deep sea
- Seals
- Automotive
- Civil Engineering

Bridge Strike

- Oil Industry
- Marine
- Wind energy
- Air frames
- Marine Masts
- Sails
- Rail
- Deep sea
- Seals
- Automotive
- Civil Engineering
- Defence Applications

What is stopping you adopting SHM?

- Technology?
- Lack of Information?

How we might assist

- Provide know-how
- Provide components such as ready-to-use sensors
- Provide pre-forms
- Provide application engineering
- Provide structures

What do you need that we could develop together using our SHM expertise?

Steve Phillipson, Sigmatex

Andrew Ball, Sigmatex

Ed Findon, BVT

Mark Dixon, Deep Sea Engineering

Lisa Fixter, QinetiQ

Julian Ellis, Ellis Developments

Robert West, QinetiQ

Who to talk to here

Jonathan Gore, QinetiQ

